VON ARDENNE was founded in 1991 as a spin-off of the former Manfred von Ardenne Research Institute. The company is based in Dresden, with subsidiaries in China, Japan, Malaysia, the USA and Vietnam. Manfred von Ardenne’s inventions formed the basis for our work today in the fields of vacuum, plasma and electron beam technology.

The German family-owned company develops and manufactures advanced coating equipment for the deposition of ultra-thin functional layers on materials such as glass, metal strip, wafers and polymer films. Two key technologies are applied by our equipment: magnetron sputtering, a process during which materials such as metals or oxides are atomized in plasma and then condense as a layer, and electron beam evaporation, a method of vaporizing metals and alloys by bombarding them with electron beams.

Equipment, components and technologies made by VON ARDENNE make an important contribution to the protection of the environment. Our customers use them to produce sustainable products for the generation of renewable energy and the sustainable use of resources.

The major international manufacturers of crystalline and thin-film solar modules use our highly productive equipment for their production. We are also cooperating closely with them to develop the next generation of modules that will be even more efficient.

We have acquired an excellent process know-how based on the more than 150 coating systems we have installed for crystalline solar cells and thin-film solar module providers. This expertise has been incorporated into the development of coating systems for the next generations of high-efficiency solar cells.

VON ARDENNE is a major player in the heterojunction technology (HJT) market with the modular XEA|nova coating system, which can be configured according to the needs of our customers. Such coating systems are currently operated in production lines with an overall capacity of 1.5 GWp. The double-sided coating of wafers in just one coating cycle is just one of the features of this highly productive and flexible tool, which is suited for both standard and special wafer formats.

The two driving factors in the industry are increasing the productivity and lowering the manufacturing costs for the cells. Our latest coating system, the XEA|nova L, is designed to accommodate these factors. Depending on the cycle time, this coating system is able to process between 8,000 and 10,000 wafers in 6-inch format per hour.

This trend will continue to shape the development of the industry, which has the aim to consolidate the status of photovoltaics as a reliable and economic source of renewable energy. Therefore, VON ARDENNE will keep working on new high-efficiency cell concepts that will only be possible thanks to our highly productive and precise thin-film deposition technology.

With the flexible, modular SCALA, we offer the ideal coating system for research and development tasks as well as for pilot production.

In order to meet this market demand, manufacturers of PV components need to offer more efficient and more reliable products at lower prices. High conversion efficiency and high lifetime are key for that reason. High-efficiency crystalline silicon solar cell technology will be introduced in production. All of the concepts require new high-quality thin films in order to build up appropriate cell structures applied by means of highly productive deposition methods. VON ARDENNE provides the necessary technology and equipment.
VON ARDENNE is your partner of choice if you are looking for systems with a modular design that can be easily tailored to your technology and productivity requirements. These modular process systems are ideally suited to be applied in research and development as well as for volume production.

Our cluster systems are based on a platform with many modular units. Therefore, every tool may be configured according to the specific applications of our customers.

For customers in the solar industry, special features for producing high-efficiency heterojunction (HJT) solar cells can be integrated into the platforms. These features are, for instance, PECVD modules for the deposition of variously doped amorphous silicon layers.

Furthermore, we can integrate deposition systems for hot wire technology applications (HW CVD) or components for very high frequency chemical vapor deposition (VHF CVD) of amorphous Si:H layers (a-Si:H) or micro-crystalline μc-Si:H layers in a frequency ranging up to 140 MHz. A special chamber enables the low-cost deposition of ITO by means of rotatable magnetrons. Optionally, AZO can be deposited to create ZnO:Al layers. Our HJT cluster systems can also be equipped for the dry processing of layers for perovskite solar cells.

Thanks to their flexibility, VON ARDENNE cluster systems help our customers reach maximum solar cell efficiencies and reduce the cost of ownership.

VON ARDENNE is your partner of choice if you are looking for systems with a modular design that can be easily tailored to your technology and productivity requirements. These modular process systems are ideally suited to be applied in research and development as well as for volume production.

Our cluster systems are based on a platform with many modular units. Therefore, every tool may be configured according to the specific applications of our customers.

For customers in the solar industry, special features for producing high-efficiency heterojunction (HJT) solar cells can be integrated into the platforms. These features are, for instance, PECVD modules for the deposition of variously doped amorphous silicon layers.

Furthermore, we can integrate deposition systems for hot wire technology applications (HW CVD) or components for very high frequency chemical vapor deposition (VHF CVD) of amorphous Si:H layers (a-Si:H) or micro-crystalline μc-Si:H layers in a frequency ranging up to 140 MHz. A special chamber enables the low-cost deposition of ITO by means of rotatable magnetrons. Optionally, AZO can be deposited to create ZnO:Al layers. Our HJT cluster systems can also be equipped for the dry processing of layers for perovskite solar cells.

Thanks to their flexibility, VON ARDENNE cluster systems help our customers reach maximum solar cell efficiencies and reduce the cost of ownership.

VON ARDENNE is your partner of choice if you are looking for systems with a modular design that can be easily tailored to your technology and productivity requirements. These modular process systems are ideally suited to be applied in research and development as well as for volume production.

Our cluster systems are based on a platform with many modular units. Therefore, every tool may be configured according to the specific applications of our customers.

For customers in the solar industry, special features for producing high-efficiency heterojunction (HJT) solar cells can be integrated into the platforms. These features are, for instance, PECVD modules for the deposition of variously doped amorphous silicon layers.

Furthermore, we can integrate deposition systems for hot wire technology applications (HW CVD) or components for very high frequency chemical vapor deposition (VHF CVD) of amorphous Si:H layers (a-Si:H) or micro-crystalline μc-Si:H layers in a frequency ranging up to 140 MHz. A special chamber enables the low-cost deposition of ITO by means of rotatable magnetrons. Optionally, AZO can be deposited to create ZnO:Al layers. Our HJT cluster systems can also be equipped for the dry processing of layers for perovskite solar cells.

Thanks to their flexibility, VON ARDENNE cluster systems help our customers reach maximum solar cell efficiencies and reduce the cost of ownership.
APPLICATION

HJT
High-performance TCO contact layers and metallization

IBC
High-performance metallization layers and back side mirror combined with lowest cost of ownership

Passivated Contacts
Single-sided deposition of in-situ doped amorphous silicon as well as SiN layer for hydrogenation

Perovskite Solar Cells
High-performance TCO interconnection layer plus full stack of electrical active layers to build up tandem top cell

The **SCALA** is a modular vacuum coating system with a carrier-based substrate transport. It is primarily designed for crystalline photovoltaics applications on silicon wafers. However, it can also be adjusted for thin-film photovoltaics applications on glass or other applications on various flat substrates.

With the **SCALA**, you can benefit from our experience gained from more than 150 coating systems that we have delivered to the PV industry. It is the perfect choice if you are looking for highly flexible production equipment with a small or medium throughput equipped with proven technology. Thanks to its modular design, the **SCALA** can be configured according to your needs. We offer two basic configurations of the system.

The **SCALA LabX** is a single-ended tool for horizontal batch processing with or without load lock. It is ideally suited for process and application development at laboratory scale.

The **SCALA PilotX**, on the other hand, is designed for horizontal inline operation and therefore suitable for pilot production.

HIGH PROCESS FLEXIBILITY

The process chamber can be configured with planar or rotatable magnetrons or with process components for thermal evaporation, PECVD or HWCVD. Ion pre-treatment or heating and cooling units are available upon request. All auxiliary chambers, like entry/exit, buffer and transport chamber, can be upgraded in a similar manner.

PROVEN PROCESS COMPONENTS

Our proven process technology guarantees excellent layer properties and coating uniformity. VON ARDENNE has been developing and manufacturing magnetrons for various applications for more than 40 years and we have more than 10 years of experience in thermal evaporation and CVD.

HEATING

For transparent conductive oxides like ITO or other special applications, the substrate temperature can be precisely controlled in order to achieve reproducible and ideal layer characteristics by optional active heating or cooling.

PROCESS CHAMBER

The process chamber can be equipped with up to five different process stations in a sputter down arrangement, or with process components for thermal evaporation, PECVD or HWCVD. It enables simultaneous or sequential processing of different material compositions, which is particularly suited for R&D purposes.

FLEXIBLE AND DYNAMIC DESIGN

The standardized subcomponents enable custom-made configurations with a high degree of flexibility. That means that the system can be adapted to changing processes or requirements. Therefore, our customers are able to act very dynamically and to adapt to the evolution of their product.

TECHNICAL DATA

Subject to change without notice due to technical improvement.

GENERAL FEATURES

SCALA LabX

- Throughput: 1 carrier per hour
- Substrates: wafers, metal plates, polymer films, glass, others
- Substrate size: 6” (standard), other substrate sizes possible
- Substrate thickness: ≤ 3 mm
- Coating area on carrier: LabX ≈ (480 x 480) mm², e.g. (3 x 3) 6” wafers

SCALA PilotX

- Throughput: ≤ 1200 wafers/hour
- Substrates: wafers, metal plates, polymer films, glass, others
- Substrate size: 6” (standard), other substrate sizes possible
- Substrate thickness: ≤ 3 mm
- Coating area on carrier: PilotX = (480 x 800) mm², e.g. (3 x 5) 6” wafers

PROCESS COMPONENTS

- Type of sputter source: single or dual rotatable, planar magnetron
- Thermal evaporation source: linear, 1,800°C
- PECVD source: 13.56 MHz
- HWCVD source: 13.56 MHz
- Number of independent processes: ≤ 4 (for LabX, PilotX on request)
- Gases and media: e.g. Ar, H₂, O₂, N₂, H₂O, X

OPTIONAL FEATURES

- Substrate heating
- Pre-treatment (e.g. ion etching…)
- Automated substrate loading & unloading
- Automated carrier return system
- Controlled heating and cooling unit (CHU)
- Dry air supply (CDA)
- Carrier storage racks
- Movabale carrier stacker
- Others on request
GENERAL FEATURES

- Throughput ≤ 5500 substrates/hour
- Substrates: wafers, metal plates, polymer films, others
- Substrate size: 6" (standard), other substrate sizes possible
- Substrate thickness ≤ 3 mm
- Coating area on carrier ≈ (1 x 1.7) m², e.g. (6 x 9) 6" wafers

SPUTTERING SYSTEM

- Magnetron type: single or dual rotatable
- Sputter arrangement: sputter up and sputter down
- Deposition type: DC, pulsed DC, AC
- Number of independent process: unlimited
- Gases and media: e.g. Ar, O₂, N₂, H₂O, X
- Target utilization > 80 %, depending on process & material

OPTIONAL PROCESS FEATURES

- Substrate heating
- Pre-treatment (e.g. Ion etching ...
- Alternative deposition technologies upon request

APPLICATION

HJT
- High-performance TCO contact layers and metalization

IBC
- High-performance metalization layers and back side mirror combined with lowest cost of ownership

Passivated Contacts
- Single-sided deposition of in-situ doped amorphous silicon as well as SiN layer for hydrogenation

PROCESS UNITS WITH UP AND/OR DOWN ARRANGEMENT

For the substrate treatment, the retractable process units (PUs) in the process chamber can be equipped with various process tools in up and down arrangement.

SIMULTANEOUS OR SEQUENCED PROCESSING

The combination of up and down arrangements facilitates simultaneous or sequenced processing of both substrate sides without additional handling or breaking the vacuum.

CONVENIENT AND QUICK MAINTENANCE

The optimized machine design enables easy access to the process environment and the auxiliary chambers. Due to the plug-and-play design of the process units, they can be maintained during production, a fact that shortens the green to green times even more.

BROAD THROUGHPUT RANGE AND HIGH PROCESS FLEXIBILITY

Depending on the market and process demands of the customer, the maximum substrate throughput can be exceptionally high. The process chamber can be configured with rotatable magnetrons, thermal evaporators as well as ion pretreatment or heating and cooling units. All auxiliary chambers, like entry/exit, buffer and transport chamber, can be upgraded in a similar manner.

FLEXIBLE AND DYNAMIC IN PRODUCTION

The standardized subcomponents enable custom-made configurations with a high degree of flexibility. That means that the system can be adapted to changing processes or requirements. Therefore, our customers are able to act very dynamically and to keep their production in accordance with the evolution of their product.

TECHNICAL DATA

Subject to change without notice due to technical improvement.

GENERAL FEATURES

- Throughput ≤ 5500 substrates/hour
- Substrates: wafers, metal plates, polymer films, others
- Substrate size: 6" (standard), other substrate sizes possible ≤ 3 mm
- Coating area on carrier ≈ (1 x 1.7) m², e.g. (6 x 9) 6" wafers

SPUTTERING SYSTEM

- Magnetron type: single or dual rotatable
- Sputter arrangement: sputter up and sputter down
- Deposition type: DC, pulsed DC, AC
- Number of independent process: unlimited
- Gases and media: e.g. Ar, O₂, N₂, H₂O, X
- Target utilization > 80 %, depending on process & material

OPTIONAL FEATURES

- Automated substrate loading & unloading
- Automated carrier return system
- Controlled heating and cooling unit (CHU)
- Dry air supply (CDA)
- Carrier storage racks
- Others on request

AUTOMATION OPTIONS

- Single- or double-end
- Fully automatic
- Cassette, box, other

PROVEN MAGNETRON TECHNOLOGY

Proven rotatable magnetron technology guarantees excellent target utilization. For more than 40 years, VON ARDENNE has been developing and manufacturing proprietary magnetrons for all kinds of applications.

PRECISE TEMPERATURE CONTROL OF SUBSTRATES

For transparent conductive oxides like ITO or other special applications, the substrate temperature can be precisely controlled in order to achieve reproducible and ideal layer characteristics.

APPLICATION

HJT
- High-performance TCO contact layers and metalization

IBC
- High-performance metalization layers and back side mirror combined with lowest cost of ownership

Passivated Contacts
- Single-sided deposition of in-situ doped amorphous silicon as well as SiN layer for hydrogenation

THE XEA nova is a horizontal wafer coating system with a carrier return transport. It is also suited for other small substrates. With this tool, even very thin substrates can be treated on both sides without breaking the vacuum or flipping the substrates. These outstanding features of the XEA nova enable sequenced but also simultaneous treatments of both substrate surfaces.

The coater can be equipped with rotatable magnetrons for sputtering and with evaporation sources. Special pretreatment of the substrates like cleaning or etching can either take place under vacuum or before the substrate enters the vacuum.

The XEA nova benefits from our experience gained from more than 150 industry-proven coating systems that we have delivered to the photovoltaics industry.

The XEA nova is the perfect choice for customers looking for highly productive and flexible production equipment combined with proven technology and design.

VON ARDENNE benefits:
- Expertise in PVD processing, especially TCO such as ITO
- Expertise in large-area deposition
- Expertise in process upscaling
- Global network and worldwide service

TECHNICAL DATA

Subject to change without notice due to technical improvement.

GENERAL FEATURES

- Throughput ≤ 5500 substrates/hour
- Substrates: wafers, metal plates, polymer films, others
- Substrate size: 6" (standard), other substrate sizes possible ≤ 3 mm
- Coating area on carrier ≈ (1 x 1.7) m², e.g. (6 x 9) 6" wafers

SPUTTERING SYSTEM

- Magnetron type: single or dual rotatable
- Sputter arrangement: sputter up and sputter down
- Deposition type: DC, pulsed DC, AC
- Number of independent process: unlimited
- Gases and media: e.g. Ar, O₂, N₂, H₂O, X
- Target utilization > 80 %, depending on process & material

OPTIONAL FEATURES

- Automated substrate loading & unloading
- Automated carrier return system
- Controlled heating and cooling unit (CHU)
- Dry air supply (CDA)
- Carrier storage racks
- Others on request

AUTOMATION OPTIONS

- Single- or double-end
- Fully automatic
- Cassette, box, other

PROVEN MAGNETRON TECHNOLOGY

Proven rotatable magnetron technology guarantees excellent target utilization. For more than 40 years, VON ARDENNE has been developing and manufacturing proprietary magnetrons for all kinds of applications.

PRECISE TEMPERATURE CONTROL OF SUBSTRATES

For transparent conductive oxides like ITO or other special applications, the substrate temperature can be precisely controlled in order to achieve reproducible and ideal layer characteristics.
The XEA|nova L is an inline coating system based on our proprietary large-area coating technology. The system is wider than the XEA|nova and can process more substrates at the same time. Therefore it is especially suited for high productivity applications at very low costs. It is suited for silicon wafers or other small and even very thin substrates. Thanks to its modular design, the XEA|nova L can be equipped with rotatable magnetrons for the sputter deposition of high-performance TCO layers or several other materials, such as metals and metal oxides. It can also be adapted for other deposition technologies. The substrates can also be pre-treated by cleaning or etching, either under vacuum or before it enters the vacuum.

VON ARDENNE is also working on introducing single-sided passivated contacts processed by means of high-rate soft sputtering into mass production. The necessary sputtering process technology will be designed to fit into the XEA|nova L platform.

GENERAL FEATURES

- Throughput: 8000 wph to 10,000 wph
- Substrates: wafers, metal plates, polymer films, others
- Substrate size: 6" (standard), other substrate sizes possible
- Substrate thickness: ≤ 3 mm
- Coating area on carrier: ≈ (1.5 x 2.3) m², e.g. (9 x 12) 6" wafers

SPUTTERING SYSTEM

- Magnetron type: single or dual rotatable, planar
- Deposition type: DC, pulsed DC, AC, unlimited
- Number of independent processes: unlimited
- Gases and media: e.g. Ar, H₂, O₂, N₂, X
- Target utilization: > 80 %, depending on process & material

TECHNOICAL DATA

Subject to change without notice due to technical improvement.

APPLICATION

HJT
- High-performance TCO contact layers and metalization

IBC
- High-performance metalization layers and back side mirror combined with lowest cost of ownership

Passivated Contacts
- Single-sided deposition of in-situ doped amorphous silicon as well as SiN layer for hydrogenation

TECHNICAL DATA

- **GENERAL FEATURES**
 - Throughput: 8000 wph to 10,000 wph
 - Substrates: wafers, metal plates, polymer films, others
 - Substrate size: 6" (standard), other substrate sizes possible
 - Substrate thickness: ≤ 3 mm
 - Coating area on carrier: ≈ (1.5 x 2.3) m², e.g. (9 x 12) 6" wafers

- **SPUTTERING SYSTEM**
 - Magnetron type: single or dual rotatable, planar
 - Deposition type: DC, pulsed DC, AC, unlimited
 - Number of independent processes: unlimited
 - Gases and media: e.g. Ar, H₂, O₂, N₂, X
 - Target utilization: > 80 %, depending on process & material

- **OPTIONAL FEATURES**
 - Automated substrate loading & unloading
 - Automated carrier return system
 - Controlled heating and cooling unit (CHU)
 - Dry air supply (CDA)
 - Carrier storage racks
 - Others on request

HIGHEST ECONOMY OF SCALE

Due to its large width, the productivity of the tool is exceptionally high while the process utilization is brought to a maximum. Thus, the XEA|nova L offers best cost of ownership by providing applicable economy of scale.

PROVEN MAGNETRON TECHNOLOGY

Proven rotatable magnetron technology guarantees excellent target utilization. For more than 40 years, VON ARDENNE has been developing and manufacturing proprietary magnetrons for all kinds of applications.

PROCESS CHAMBER

The process chamber enables simultaneous processing of different material compositions, such as TCO’s, TCO stack layers and/or combinations of TCO, metal oxides and metal stacks.

PRECISE TEMPERATURE CONTROL OF SUBSTRATES

For transparent conductive oxides like ITO or other special applications, the substrate temperature can be precisely controlled in order to achieve reproducible and ideal layer characteristics by optional active heating or cooling.

EDGE EXCLUSION, FULL AREA, ALL AROUND & BEVEL

The innovative VON ARDENNE carrier concept is very flexible and enables the deposition on substrates with full or partial edge exclusion. Furthermore, the substrate can be coated on the full area and all around, including the bevel.

CONVENIENT AND QUICK MAINTENANCE

The optimized machine design enables easy access to the process environment and the auxiliary chambers.

FLEXIBLE AND DYNAMIC IN PRODUCTION

The standardized subcomponents enable custom-made configurations with a high degree of flexibility. That means that the system can be adapted to changing processes or requirements. Therefore, our customers are able to act very dynamically and to keep their production in accordance with the evolution of their product.

OPTIONALE FEATURES

- Substrate heating
- Pre-treatment (in e.g. ion etching...)
- Alternative deposition technologies upon request

AUTOMATION OPTIONS

- Configuration
- Substrate feeding
- Single- or double-end
- Fully automatic
- Cassette, box, other
VON ARDENNE develops and manufactures industrial equipment for vacuum coatings on materials such as glass, wafers, metal strip and polymer films. These coatings give the surfaces new functional properties and can be between one nanometer and a few micrometers thin, depending on the application.

Our customers use these materials to make high-quality products such as architectural glass, displays for smartphones and touchscreens, solar modules and heat protection window film for automotive glass.

We supply our customers with technologically sophisticated vacuum coating systems, extensive expertise and global service. The key components are developed and manufactured by VON ARDENNE itself.

Systems and components made by VON ARDENNE make a valuable contribution to protecting the environment. They are vital for manufacturing products which help to use less energy or to generate energy from renewable resources.